THE GENERATING HYPOTHESIS FOR THE STABLE MODULE CATEGORY OF A p-GROUP
نویسندگان
چکیده
Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial finite p-group G if and only if G is either C2 or C3. We also give various conditions which are equivalent to the generating hypothesis.
منابع مشابه
FREYD’S GENERATING HYPOTHESIS FOR THE STABLE MODULE CATEGORY OF A p-GROUP
Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial p-group G if and only if G is either Z/2 or Z/3. We also give various conditions which ar...
متن کاملFreyd’s Generating Hypothesis with Almost Split Sequences
Freyd’s generating hypothesis for the stable module category of a nontrivial finite group G is the statement that a map between finitely generated kGmodules that belongs to the thick subcategory generated by k factors through a projective if the induced map on Tate cohomology is trivial. In this paper we show that Freyd’s generating hypothesis fails for kG when the Sylow p-subgroup of G has ord...
متن کاملFreyd’s Generating Hypothesis for Groups with Periodic Cohomology
Let G be a finite group and let k be a field whose characteristic p divides the order of G. Freyd’s generating hypothesis for the stable module category of G is the statement that a map between finite-dimensional kG-modules in the thick subcategory generated by k factors through a projective if the induced map on Tate cohomology is trivial. We show that if G has periodic cohomology then the gen...
متن کاملThe category of generalized crossed modules
In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007